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A Frequency-Dependent Basis Funétion Applied
to Microstrip

Charles Hechtman, Henry Zmuda, and David Gabbay

Abstract —Spheroidal wave functions and the spectral-domain method
are used to compute the effective dielectric constant for microstrip. A
single-term expansion for the vector current density provides excellent
results over a broad spectrum (1-100 GHz). Numerical results compare
favorably with other commonly used techniques.

1. INTRODUCTION

Microstrip is an important planar transmission structure and
has many applications (see, for example, [1]). The most popular
quasi-static (approximate) microstrip solutions were found by
Wheeler [2], [3]. Later Denlinger [4] gave a frequency-dependent
(dispersive) microstrip solution. This solution centers on a
Fourier transform approach using an approximate current distri-
bution. Subsequently, Itoh and Mittra [5] enhanced the tech-
nique by using the spectral-domain method (SDM) [6]. This
combines Denlinger’s Fourier formulation with the moment
method [7] for determining the propagation constant and the
current distribution simultaneously. With the SDM, the current
is sought in terms of a truncated series of aperture limited basis
functions.

_Initially Itoh and Mittra [5] used a pulse and triangle as basis
functions to simulate the current distribution. Later, Uwano and
Itoh [8] realized that it would take many terms to simulate the
edge singularities and suggested sinusoidal functions with appro-
priate edge conditions as an orthogonal basis set. (Note that
apertures with infinitely sharp edges require that the current
density vector follow specific behavior near the edge. This is
known as the edge condition.) Moreover, other basis functions
have been suggested for similar aperture limited type problems,
e.g., Chebyshev polynomials [9] and Legendre polynomials [10].
It is known that an appropriate choice of basis function results
in an accurate solution with a small number of expansion terms
[11]. In addition, a candidate for a single-term current represen-
tation must be frequency dependent [12] and therefore excludes
the above basis functions. Such considerations are important for
MMIC CAD applications, especially where radiation effects
must be taken into account. Rhodes, in his scholarly work on
synthesis of planar antenna sources [13], introduced spheroidal
wave functions (SWF) for aperture radiation problems. In his
work he exploited the double orthogonal properties of SWF’s
for far-field synthesis. In this present communication we explore
the ability of the SWF to change shape as a function of a
parameter, e.g., frequency, while maintaining orthogonality,
completeness, edge condition, and aperture limit.

In the next section we introduce the SDM equations and
provide a brief overview of the SWF. We then study the effec-
tive dielectric constant as a function of frequency for several
commonly used basis functions.
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Fig. 1. Configuration of microstrip transmission line structure.

II. FORMULATION

Fig. 1 shows the microstrip transmission line with an appro-
priate coordinate system. The structure extends infinitely in the
y direction. The strip, centered at the origin, is of width a,
infinitesimally thin, and perfectly conducting. A perfectly con-
ducting ground plane is located a distance d below the strip as
shown. Region 1 is of infinite extent above the strip., the permit-
tivities of dielectric regions 1 and 2 are €, and ¢,, respectively,
and permeability u, is assumed throughout. Field quantities
vary in time as e/*’.

Using the vector potential formulation [6] of the SDM, the
electric field, E:, is related to the current, f, confined on the
strip by

E(a,B)=G"'(a,B)J(a.B) )
where G~ is the matrix inverse of G,
G(as ) = —
a,B)=——0
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The Fourier transforms of the current density vector, J, and the
clectric ficld, E, are given by

-i(a,ﬁ)=ff_l](x,y)e”“’”ﬁ”dxdy (4)

E(a,B)=jf_o;E(x,y)e—J(ax+By>dxdy (5)
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where

=Kot K=k

i=1,2. (6)

It is required to find the current density, J, and the propagation
constant, B, that force E,=E,=0 on the metal strip. The
solution is found by expanding the current density in terms of
aperture limited basis functions [8] (the current must of course
be zero off the strip):

2_ 2
ki =o€,

~ M -
]y: Z dm]ym (7)
m=1

m=1
where ¢, and d,, are constants to be determined. The expan-
sions are substituted into (1) and by Parseval’s theorem and by
requiring that the structure be infinite in the y direction, the
following matrix equation is formed:

w . . N B .. M 3
f [Jka;ll Z Cm"xm + Jka2711 Z dm"ymil da = 07
- m=1 m=1

k=12,---,N (8)
- N 3 M ;
j [i»kél_Zl Z ij;cm + JykG~2_21 Z dm]ymjl da = O”
—-*® m=1 m=1
k=1,2,---,M. (9)

In Itoh and Mittra’s SDM microstrip solution the first terms
(M = N =1) of the current distribution are a pulse for the y
component,

1 <a/2
=l =/ (10)
0, lx|>a/2
and a truncated square wave for the x component,
-1, —a/2<x<0
J,={1, 0<x<a/2 (11)
0, lx|>a/2.

Additional terms may be added with triangle functions. The y
and x component of J can be expressed as in Itoh’s book [8].
He suggests
cos[2(n—Dwx/a
I I 72 R
V1-(2x/a)

sin|2nwx /a

Vi-(@2x/a)?

The second set of basis functions possesses the edge conditions
for the strip and, therefore, converges more rapidly than the
first.

Shi et al. [12] showed the change in the current distribution as
a function of frequency. The basis functions described above are
independent of frequency and thus rely totally on a proper
weighting of several functions to reflect the change in frequency.

In Rhodes’s work on planar antenna synthesis he uses proper-
ties of SWF’s to synthesize antenna radiation patterns. For such
radiation problems, he shows that the SWF’'s are “natural
functions” for aperture limited planar antennas. Although this
paper deals only with the fundamental microstrip mode, which
does not radiate, the SWF still serves as an excellent basis
function. Moreover, while maintaining orthogonality, aperture
limit, and edge conditions, these SWE’s evolve to provide an

(12)

(13)

approximation to the current variation with frequency. The
SWF as described by Rhodes in [13, appendix III] is defined by
a linear integral equation. It is modified and expressed as

(e /€)= [ e (1= @ /d)) b e0)

r>-1 (14)

where ¢ (c,x) is the spheroidal wave function. The propor-
tionality constant v, ,(c) is the characteristic number (i.e., eigen-
value) and ¢ is a parameter that effects the distribution of the
wave function. Note that (14) is essentially the Fourier trans-
form of the product of a weighting function and the spheroidal
wave function over the aperture (—a /2 to a/2), where «
serves as the variable in the Fourier transform domain. The
left-hand side of (14) is again the spheroidal wave function in
the Fourier transform domain scaled by 1 /c. The SWF’s are an
entire function of a. They are real for real «, they have exactly
n zeros within the interval (—a /2,a /2), they are even or odd
functions of « according to whether n even or odd, and they are
orthogonal and complete on the intervals (—a /2,a /2) and
(— o0, 0)

The following edge conditions are satisfied [13] for both y and
x components of the current:

Tp=do(1-@x/d)) " 0 _1 5 0(c.%),

and

=—1/2 (15)

172

]xn=cn(l_(2x/d)_) d’l/Z,n(C’x)’
where ¢ _ 5 (¢, x)=Se (c,x) and

V12,6 %) = 80,41(¢, %) /(1-2x /a)'?

with Se, and So,.; being periodic even and odd Mathieu
functions. This is consistent with the edge conditions in (12) and
(13).

=172 (16)

III. NuMericaL REesuLTs

We examine a microstrip structure with dimensions and
dielectric values equivalent to the examples presented by
Denlinger and Itoh. We compute the effective dielectric con-
stant for several basis functions as a function of frequency. For
all cases we compute an effective dielectric constant using a
two-term SWF expansion per component {M = N = 2) in matrix
equations (8) and (9). Owing to the symmetry of the problem we
require only even terms for the y component and only odd
terms for the x component. The current thus takes the following
form:

Ta=dy(1-@2x/d)) "4y e, x) a7

-1/2

Ja=dy(1-Q2x/d)?) gy 5 0(c.x) (18)

where ¢ is determined by trial and error to be 1.8kya /2.
Similarly,

Jxl=Cl(l_(zx/d)z)l/zdjl/l,l(c’x) (19)

J.xz:Cz(l*(2)‘/‘1)2)1/2‘1’1/2.3(@)5) (20)

where ¢ is determined by trial and error to be 1/(1+ kqya /2).

Figs. 2-5 show the effective dielectric constant, e . as a
function of frequency for microstrip counsisting of a strip 3.17
mm wide, 3.07 mm above the ground plane, and having a
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MICROSTRIP, a =3.17 (mm), d=3.07 (mm), €,=11.7
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Fig. 2. Variation of effective dielectric constant with frequency (pulse).
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Fig. 3. Variation of effective dielectric constant with frequency
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relative dielectric constant €, =11.7. Fig. 2 compares the pulse
and square wave basis function of (10) and (11) for (M = N=1)
with two terms of the SWF, (17)—(20), for (M = N = 2). Fig. 3
compares one term of the cosine and sine basis function of (12)
and (13) for (M = N = 1) against the SWF (M = N =2). Fig. 4
compares two terms of the cosine and sine basis function (M =
N =2) against the SWF (M = N = 2). Finally, Fig. 5 compares
one term of the SWF (M = N = 1) against the SWF (M = N = 2).
It is evident that a single term of the pulse (Fig. 2) or cosine and
sine (Fig. 3) basis function does not follow the base line. How-
ever, two terms of the cosine function (Fig. 4) is a reasonable fit
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Fig. 5. Variation of effective dielectric constant with frequency (SWF).

except at 50-65 GHz, where there is a significant departure.
With one term of the SWF (Fig. 5), the two curves do not
exhibit any major departure over the entire frequency range.

IV. DiscussioN

The SDM relies on a gaod choice of basis function to achieve
rapid convergence. Rapid convergence will occur when a basis
function is an excellent approximation to the actual eigenfunc-
tion. The basis functions that appear in the literature are
excellent single-term approximations in the vicinity of a single
frequency, namely dc. Unfortunately, the current distribution
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changes with frequency. Therefore, these basis functions have
rapid convergence only in a limited region. In contrast, the first
even and odd SWF’s approximate the current distribution accu-
rately for the fundamental mode of microstrip over a broad
frequency range. Therefore, the SWE’s are excellent basis func-
tions when rapid convergence is required over a broad fre-
quency spectrum.

To the best of the authors’ knowledge, this is the first time
SWF’s have been applied to a guided microstrip problem. It is
believed that the SWE’s are ideally suited for aperture limited
type problems that in general include radiation and guided
waves.

Future work will center on the use of SWF’s as basis functions
for higher order modes and more complicated structures. In
addition, a determination of the parameter ¢ from basic princi-
ples would be desirable.
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