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A Frequency-Dependent Basis Function Applied
to Microstrip

Charles Hechtman, Henry Zmuda, and David Gabbay

Abstract —Spheroidal wave fuuctions and the spectral-domain method
are used to compute the effective dielectric constant for microstrip. A
single-term expansion for the vector current density provides excellent
results over a broad spectrum (1-100 GHz). Numerical results compare

favorably with other commonly used techniques.
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I. INTRODUCTION

Microstrip is an important planar transmission structure and

has many applications (see, for example, [1]). The most popular

quasi-static (approximate) microstrip solutions were found by

Wheeler [2], [3]. Later Denlinger [4] gave a frequency-dependent

(dispersive) microstrip solution, This solution centers on a

Fourier transform approach using an approximate current distri-

bution. Subsequently, Itoh and Mittra [5] enhanced the tech-

nique by using the spectral-domain method (SDM) [6]. This

combines Denlinger’s Fourier formulation with the moment

method [7] for determining the propagation constant and the

current distribution simultaneously. With the SDM, the current

is sought in terms of a truncated series of aperture limited basis

functions.

Initially Itoh and Mittra [5] used a pulse and triangle as basis

functions to simulate the current distribution. Later, Uwano and

Itoh [8] realized that it would take many terms to simulate the

edge singularities and suggested sinusoidal functions with appro-

priate edge conditions as, an orthogonal basis set. (Note that

apertures with infinitely sharp edges require that the current

density vector follow specific behavior near the edge. This is

known as the edge condition,) Moreover, other basis functions

have been suggested for similar aperture limited type problems,

e.g., Chebyshev polynomials [9] and Legendre polynomials [10].

It is known that an appropriate choice of basis function results

in an accurate solution with a small number of expansion terms

[11]. In addition, a candidate for a single-term current represen-

tation must be frequency dependent [12] and therefore excludes

the above basis functions. Such considerations are important for

MMIC CAD applications, especially where radiation effects

must be taken into account. Rhodes, in his scholarly work on

synthesis of planar antenna sources [13], introduced spheroidal

wave functions (SWF) for aperture radiation problems, In his

work he exploited the double orthogonal properties of SWF’S

for far-field synthesis. In this present communication we explore

the ability of the SWF to change shape as a function of a

parameter, e.g., frequeney, while maintaining orthogonality,

completeness, edge condition, and aperture limit.

In the next section we introduce the SDM equations and

provide a brief overview of the SWF. We then study the effec-

tive dielectric constant as a function of frequency for several

commonly used basis functions.
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Fig. 1. Configuration of microstrip transmission line structure.

II. FORMULATION

Fig. 1 shows the microstrip transmission line with an appro-

priate coordinate system. The structure extends infinitely in the

y direction. The strip, centered at the origin, is of width a,

infinitesimally thin, and perfectly conducting. A perfectly con-

ducting ground plane is located a distance d below the strip as

shown. Region 1 is of infinite extent above the strip, the permit-

tivities o! dielectric regions 1 and 2 are c1 and ez, respectively,

and permeability pO is assumed throughout. Field quantities

vary in time as e]mt.

Using the vector potential formulation [6] of the SDM, the

electric field, E, is related to the current, J: confined on the

strip by

i(a, p) = G-l(a, L3)~(ci,/3) (1)

where G – 1 is the matrix inverse of G,
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and

‘=121‘=[i] (3)

The Fourier transforms of the current density vector, J, and the

electric field, E, are given by

~(a,p) =~~m J(x, y)e-{(”’+py)dxdy
—m

(4)

(5)
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where

-/ = & _a2–p2 k:= elk:

k: = CO2KO~0, i=l,2. (6)

It is required to find the current density, j, and the propagation

constant, ~, that force EX = EY = O on the metal strip. The

solution is found by expanding the current density in terms of

aperture limited basis functions [8] (the current must of course

be zero off the strip):

N M

~r = ~ Cm.fxm .fY = ~ dmf,m (7)

m=l ~=1

where cm and d,. are constants to be determined. The expan-

sions are substituted into (1) and by Parseval’s theorem and by

requiring that the structure be infinite in the y direction, the

following matrix equation is formed:

‘x N

~[

M

1
~kGfil ~ c,n~m,+ i’k~~l ~ dmf,m da= O,

—m ~=1 m=l

k=l,2,., , N (8)

N

J[

M

1“{,kti~~~cm~,n+fykG~l~dmfYn, da= O,
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k=l,2, ””. , ~ (9)

In Itoh and Mittra’s SDM microstrip solution the first terms

(M= N =1) of the current distribution are a pulse for the y

component,

J,=

{

1, lxl<a/2

o, lxl>a/2
(lo)

and a truncated square wave for the x component,

[

–1, – a/2<x<0

J.= 1, O<x<a/2 (11)

o, lxl>a/2.

Additional terms may be added with triangle functions. The y

and x component of J can be expressed as in Itoh’s book [8].

He suggests

cos[2(n–l)7x,/a]

‘y= J1-(2x/a)’ ‘ ‘=1’2””

(12)

sin[2n~x/a]

‘x=~’

n=l,2, . . . . (13)

The second set of basis functions possesses the edge conditions

for the strip and, therefore, converges more rapidly than the

first.

Shi et al. [12] showed the change in the current distribution as

a function of frequency. The basis functions described above are

independent of frequency and thus rely totally on a proper

weighting of several functions to reflect the change in frequency.

In Rhodes’s work on planar antenna synthesis he uses proper-

ties of SWFS to synthesize antenna radiation patterns. For such

radiation problems, he shows that the SWFS are “natural

functions” for aperture limited planar antennas. Although this

paper deals only with the fundamental microstrip mode, which

does not radiate, the SWF still serves as an excellent basis

function. Moreover, while maintaining orthogonality, aperture

limit, and edge conditions, these SWF’S evolve to provide an

approximation to the current variation with frequency. The

SWF as described by Rhodes in [13, appendix III] is defined by

a linear integral equation. It is modified and expressed as

~r.,,(c)@,.,,(c, ~/c) =~~f~:-J"X(l-(2 x/d)') '@,,,,(c, x)dt,

7>–1 (14)

where t,,,~c, x) is the spheroidal wave function. The propor-

tionality constant v,, ~(c) is the characteristic number (i.e., eigen-

value ) and c is a parameter that effects the distribution of the

wave function. Note that (14) is essentially the Fourier trans-

form of the product of a weighting function and the spheroidal

wave function over the aperture ( – a/2 to a/2), where a

serves as the variable in the Fourier transform domain. The

left-hand side of (14) is again the spheroidal wave function in

the Fourier transform domain scaled by 1/c. The SWF’S are an

entire function of a. They are real for real a, they have exactly

n zeros within the interval ( – a /2, a /2), they are even or odd

functions of a according to whether n even or odd, and they are

orthogonal and complete on the intervals ( – a/2, a /2) and
(-m, co)

The following edge conditions are satisfied [13] for both y and

x components of the current:

JYn=dn(l -(2x/d) 2)-l’’+ _1/2,,,(c, x), 7 = –1/2 (15)

and

JXn = cn(l–(2x/d)2)1’2 Vl\z,,,(c, x)> T = 1/2 (16)

where V-112,. (C,x) = Se$c, x) and

@l/2, n(c, x)= S~n+1(c3x)/(1 -2x/a)l’2

with Se. and So. + ~ being periodic even and odd Mathieu

functions. This is consistent with the edge conditions in (12) and

(13).

III. NUMERICAL RESULTS

We examine a microstrip structure with dimensions and

dielectric values equivalent to the examples presented by

Denlinger and Itoh. We compute the effective dielectric con-

stant for several basis functions as a function of frequency. For

all cases we compute an effective dielectric constant using a

two-term SWF expansion per component (M= N = 2) in matrix

equations (8) and (9). Owing to the symmetry of the problem we

require only even terms for the y component and only odd

terms for the x component. The current thus takes the following

form:

where c

Similarly,

JY1=dJ(l -(2x/d) ’)-’’’+ _l,,,O(x) .x) (17)

JY, =d,(l-(2x@-’’2~_ 2,&,x)x) (18)

is determined by trial and error to be 1.8koa /2.

Jxl=cl(l –(2x/d)2)1’241/z,l( c>x) (19)

J,z = cz(l–(2x\d)z)1’2 @l/z. s(ctx) (20)

where c is determined by trial and error to be 1/(1+ koa /2).

Figs. Z–5 show the effective dielectric constant, .Eeff. as a

function of frequency for microstrip consisting of a strip 3.17

mm wide, 3.07 mm above the ground plane, and having a
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Fig. 2. Variation of effective dielectric constant with frequency (pulse).
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Fig. 3. Variation of effective dielectric
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relative dielectric constant ●, = 11.7. Fig. 2 compares the pulse

and square wave basis function of (10) and (11) for (M= N = 1)

with two terms of the SWF, (17)–(20), for (M= N = 2). Fig. 3

compares one term of the cosine and sine basis function of (12)

and (13) for (M= N = 1) against the SWF (M= N = 2). Fig. 4

compares two terms of the cosine and sine basis function (M=

N =2) against the SWF (M= N = 2). Finally, Fig. 5 compares
one term of the SWF (M = N = 1) against the SWF (M = N = 2).

It is evident that a single term of the pulse (Fig. 2) or cosine and

sine (Fig. 3) basis function does not follow the base line. How-

ever, two terms of the cosine function (Fig. 4) is a reasonable fit
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Fig. 4. Variation of effective dielectric constant with frequency
(2 cosine).
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Fig. 5. Variation of effective dielectric constant with frequency (SWF).

except at 50–65 GHz, where there is a significant departure.

With one term of the SWF (Fig. 5), the two curves do not

exhibit any major departure over the entire frequency range.

IV. DISCUSSION

The SDM relies on a g~od choice of basis function to achieve

rapid convergence. Rapid convergence will occur when a basis

function is an excellent approximation to the actual eigenfurlc-

tion. The bask functions that appear in the literature are

excellent single-term approximations in the vicinity of a single

frequency, namely dc. Unfortunately, the current distribution
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changes with frequency. Therefore, these basis functions have

rapid convergence only in a limited region. In contrast, the first

even and odd SWF’S approximate the current distribution accu-

rately for the fundamental mode of microstrip over a broad

frequency range. Therefore, the SWF’S are excellent basis func-

tions when rapid convergence is required over a broad fre-

quency spectrum.

To the best of the authors’ knowledge, this is the first time

SWF’S have been applied to a guided microstrip problem. It is

believed that the SWF’S are ideally suited for aperture limited

type problems that in general include radiation and guided

waves.

Future work will center on the use of SWF’S as basis functions

for higher order modes and more complicated structures. In

addition, a determination of the parameter c from basic princi-

ples would be desirable.
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